Reliability of Selective Catalytic Reduction (SCR) and Flue Gas Desulfurization (FGD) Systems for High Pollutant Removal Efficiencies on Coal Fired Utility Boilers
نویسندگان
چکیده
SCR and FGD are making a significant contribution to the control of NOx and SO2 emissions from coal-fired generating units. These technologies are expected to contribute to further reductions in pollutant emissions in response to proposed emission reduction rules. The ability of these technologies to make significant contributions to pollution reduction in a cost-effective manner depends, in part, on the reliability of these technologies in providing high levels of pollution reduction.
منابع مشابه
Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario H...
متن کاملCritical Review Survey of Catalysts for Oxidation of Mercury in Flue Gas
Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg0) to oxidized mercury (Hg2+), followed by wet flue gas desulfurization (FGD). ...
متن کاملStudies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.
The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale react...
متن کاملEvaluation of the Effect of SCR NOx Control Technology on Mercury Speciation
The U.S. Environmental Protection Agency (EPA) performed an Information Collection Request (ICR) in 1999 to gather additional information on the control and emission of mercury from coal-fired power plants. The ICR data indicates that a significant, but highly variable, amount of mercury removal can occur across a power plant’s conventional air pollution control (APC) equipment used for the cap...
متن کاملEmissions of sulfur trioxide from coal-fired power plants.
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S conte...
متن کامل